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Attack/Defense Scenarios

Attacker Network Defender

Gonzalez, C., Aggarwal, P., Cranford, E. A., & Lebiere, C Design of Dynamic and Personalized Deception: A
4 Research Framework and New Insights for Cyberdefense. In Proceedings of the 53rd hawaii international
conference on system sciences (Vol. 1834).
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Attack/Defense Modeling
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Attack/Defense Real World
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How do Humans Learn Cybersecurity?

Transfer of Learning. Capture The Flag Challeng

* Application of experience In
one task onto another related
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Attack/Defense Real World
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Attack/Defense Real World
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Stackelberg Security Games

, /~ Training Agent
Very Slmple two player game- Resource Allocation

* Sequential decision making with Box{1 Box 2
2 or more action options. | \

Consists of an attacker and \ A0 sy

defender. /" Opponent "\

« Defender has limited resources o oo
to protect a set of assets. _44% _56%

e Attacker chooses an asset to I
attack. \L— 8/

Stackelberg Security Games: Looking Beyond a Decade of Success
Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, Milind Tambe
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Real-world applications of SSGs

: : , /~ Training Agent
SSGs are used physical security scenarios. S Y

 Opportunistic crime: Box1 Box 2
 Fare evasion in public transit. | \

 Robbery, vandalism, etc. \.
e |Infrastructure security. \_70%  30% )/
/" Opponent

e Airport passenger screening. Selection

* lllegal hunting and poaching. Box1 Box2
44%  56%

\ \

SSGs have yet to be applied onto real- \
world cybersecurity. Ly -/

Stackelberg Security Games: Looking Beyond a Decade of Success
Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, Milind Tambe
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Challenges of applying SSGs to Cybersecurity

SSGs assume long deploy/asses time.
 We consider the ‘repeated SSG'.

Real-world applications of SSGs have

focused on biases present in human

decision making.

 We additionally consider how humans
overcome these biases.
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Theory of Mind and
Transfer of Learning
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Traditional Attack/Defense Training
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Theory of Mind

Predicting the beliefs, goals,

and observations of other

agents.

 (Can allow agents to account
for things they do not
directly observe.

 Opponent’s behavior can
often reveal what they
observe and what their
goals are.

Theory of mind from observation in cognitive models and humans.
9 Nguyen, T. N., & Gonzalez, C.




Transfer of Learning

Using experience in one domain
to inform decision making in
another.

« Common target for Al research
and engineering, related to
zero or few-shot learning.

 Many different types, the type
discussed here is analogous to
domain transfer.

A survey of transfer learning.
0 Weiss, K., Khoshgoftaar, T. M., & Wang, D.




Human Transfer of Learning

In the real world, humans have experience as
attackers and defenders (Attack-Defense and
Jeopardy CTFs)

Security systems that take into account human-
like decision making and learning have been
shown to be more effective in real-world
situations.

Humans use varied experience, theory of mind,
and transfer learning to overcome biases.
1




Theory of Mind + Transfer of Learning
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ToM and ToL with
Instance Based
Learning
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Instance Based Learning Model
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Instance Based Learning with ToM
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IBL Transfer of Learning with ToM
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Comparison Models

The base IBL model predicts BR
behavior based on experience.

The IBL + ToM model uses ToM
to predict opponent actions
and learn a model for Transfer.

Upper Confidence Bound

Model behaves optimally In
SSGs.

2

7 Reinforcement learning: An introduction RS Sutton, AG Barto

Basic IBL model
exp(‘[i,ki,t/’r'v)

>k =, €XD(Oik; e/ 7o)
IBL + ToM model
eXp(Oz’,ko,t/To)
Zijzkl exp(Oik;,t/To)
Optimal UCB model

arginax [Qt(a) +c J\lfil(fz,) }



Simulation
Experimentation
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Experimentation Environment
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Experimentation Environment

Transfer Learning Period
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Improved Transfer through Theory of Mind
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Improved Transfer through Theory of Mind
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Improved Performance Against Varied Opponents

Average Reward Against

We are U|t|mate|y interested Out of Training Distribution Opponents
In performance against a
wide range of opponents

(real-world applications with
humans).
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3
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Conclusions and
Future Directions

Carnegie Mellon University



Transfer of Learning: Single Player Games
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Malloy et ah “Accounting for Transfer of Learning using Human Behavior Models” Under review.



More Complex Environments: CyBorg

' SUBNET 2 " Legend
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Questions?

Carnegie Mellon University
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